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ABSTRACT

The definitions of scheduling relations previously presented by
the author are extended in this report to allow the translation of a
relation net into an exact schedule. Time conditional conflicts in
scheduling relation nets are detected and resolved by operating on

extended versions of the bilateral implication and truth tables.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

GENE D. MUNSON
Major, USAF

iii



SECTION I

SECTION II

SECTION ILII

Appendix I
Appendix II
Appendix III

REFERENCES

TABLE OF CONTENTS

INTRODUCTION
METRIZED SCHEDULING RELATIONS

Definition of Metrized Scheduling Relations
Derivation of Metrized Implication Table
Metrized Version of Truth Table

Metrized Relation Nets
CONDITIONAL CONFLICTS

Basic Forms for the Generation of Condi-
tional Equations

Relations Between Nets

Detection and Resolution of Conditional
Conflicts

Conclusions
Metrized Scheduling Relations
Metrized Implication Table

Metrized Truth Table

Page No.

~N O B W

13

13

119

21

29

31

35

49

51



SECTION 1

INTRODUCTION

The analysis of logical scheduling conflicts was formulated in
(Ref. 1). Some of the relations defined (see Section 3.1 of Ref. 1),
such as K, ¥, and §, exactly fix the time lines of pairs of activities
with respect to one another. A scheduling relation having this property
is metrized. The relations I, X, and N, for example, do not have this
property and are therefore unmetrized. The process of extending the
definition of an unmetrized relation so that the newly defined relation
is metrized will be called metrization. The metrization of the relations
defined in (Ref. 1) will be undertaken in Section II. In the same
section, we shall show that an exact schedule 1) can be produced from a
relation net providing that (a) the relations of the net are metrized,
(b) the duration of each activity in the net is known, and (c) the start
or finish time of any of the activities is known.

In Section I1 we answer the question: Given the implication of a
relative product of scheduling relations, what is the metrized implica-
tion of the corresponding product of metrized relations? The reader will
recall that in (Ref. 1) a bilateral implication table was used to derive
the relation between any two activities of a relation net. Given the
same activities, along with their respective lengths, we now wish to
quantitatively express the relationship between the activities in terms
of the metrized relations of the relative strings to which the activities
belong. It will be shown in Section II that a metrized version of the

bilateral implication table of (Ref. 1) is sufficient for this task.

1) A schedule in which the start and finish times of each activity are
fixed relative to a time line.



The truth values of cyclic relative strings were used as a basis
for logical conflict detection in (Ref. 1). 1In Section II, we will
use true cyclic strings of metrized relations to derive a basic set of
conditional equations. These equations will be put to use in the detec-
tion and resolution of time conditional conflicts in Section III.

Other applications of metrized scheduling reiations include tne
prediction of conflicts due to the delay or slipping of activity start
and finish times, the extension of relation nets in a conflict-free
manner (a capability crucially needed for the inter-reiating of two or
more profiles), and the study of the properties of alternative scheduies
generated by relation nets containing very general constraints such as
Q, ', and Al), All of these applications will be discussed in deptn

in this report.

~
1) There are, for example, four forms of Q', including [, I, K, and
K. A relation net containing {0 will, therefore, generate at least

four schedules,




SECTION II

METRIZED SCHEDULING RELATIONS

DEFINITION OF METRIZED SCHEDULING RELATIONS

The reader is assumed to be familiar with the algebraic deftini-
tions of the scheduling relations given in (Ref. 1). As observed in the
introduction, certain of these relations are aiready metrized. Thus
given the durations of activities X and Y, and the start or finish
time of either X or Y, exact schedules can be produced from XKY,
XEY, Xyy, XAY, and X&Y, We now extend the definitions of the remain-
ing relations so that under the same conditions it is possible to produce
exact schedules from any string of the form XwY, Definitions of the

metrized relations are presented in Appendix I. To produce an exact

schedule of XY, for example, requires not only knowledge about the
relates X and Y (durations and start or finish times), but also
more knowledge about [ than is contained in its purely algebraic
definition, The additional parameter 1i = A(*Y) - A(X*) 1is easily seen
to be the needed parameter. The metrization of X, on the other hand,
requires the introduction of two parameters, 1 = A(*X) - A(*Y) and
j = A(Y*) - A(X*), Each definition or Appendix I is accompanied by a
figure which is an example of the position of the relates as governed by
the defined relation,

The relations , Q', and 4 (Definitions 18, 19, and 20 of

Appendix I) require special mention, since their metrized forms can be




expressed only as functions of previously defined relations, Observe
that there are several ways of writing the metrized versions of both
0 and A4, For example, XY <=> X(V\/B(i)\/ékl))Y and XOQYV <=>
X(JL\/a(i)\/aki))Y . In Definition 18, ( 1s expressed as the union
of all of the relations contained in O.l) Q' (Def. 195 is easier to
handle since it is the join of 4, and only 4, mutually exclusive rela-
tions. The employment of these relations, and of their equivalent modes
of expression, will be treated in the following subsection and on page 7.
For now, we note that the inclusion of one or more of the relations (1,
(', or & 1in a relation net gives rise to a combinatorial problem of
some stature.
DERIVATION OF METRIZED IMPLICATION TABLE

Denoting the metrized form of a relation w by M(w), and

given & as the implication of the relative product wl ys We now wish

to derive M(8) as a function of M(wl) and M(wz) 8riefiy, our

task is to compute the metrized implication of the relative product
M(wl) M(wz).

We introduce these notions by way of examples, Let
M(wl) = I'(1) and M(wz) = I'(j). From Appendix A of (Ref. 1) we have

IT=T, Thus XI(i)Y T(j)Z = XI'(k)Z for some value of k From

1) Thus yielding a union of non-mutually exclusive relations., XXZ(i,j)Y,
for instance, implies Xo(j)Y and hence Z(1i,j)Va(j) = a(j)



Figure 1 it is easy to see that XI'(i + ||Y|| + j)Z and thus
k =1+ ||Y|| + j . The metrized implication M(8) of I(i) I'(j) 1is
thus I'(i + ||v]| + IR

From Appendix I of (Ref, 1) we have I[Z = P . To metrize the
implication of M(I') M(Z) we form the equation I(1) Z(n,m) = F(k)l)

and solve for K., The solution is again easily seen from Figure 2,

where, clearly, k =i + ||Y|| +m ., Thus I(i) Z(n,m) = Fki + IIYll + m).

i
i j ‘ «n m
;>time o time
Fig. 1 Fig. 2

Appendix I1 of this paper is a complete table of metrized
implications for binary products of the relations defined in Appendix A.
The reader will observe that those implications containing more than one
term are written out in conditional form, i.e, with restrictions as to
when each form is used. As noted in the previous section, there are

various ways of writing the metrization of both Q and A4 . The

metrization of those products having implications containing 0 and A
can thus take on several forms. In each of these cases we have, in
Appendix B, used what appears to be the most easily deriveable form,

f(n) P(m) , for instance, equals P(m - (n + ]IX]|) pr A (4F

1) Where X, Y, and Z are understood to be, respectively, the first,
middle, and last relates of the string.

5



~r

m=n+ “Xll) or P(n + ||X‘| - m) qva' = E’VJ\\/P since P

’

~ ~s

includes I, K, o, and Z, _A includes &, P includes I, K, a,

ol ~ N o
and X, PVAVP <=>NvyYVN, and N includes B, and N includes

b

B Do) Plw) alse sgmels Nen = G [lz]])) or ¥ (if m - ||z]]| =
or N(m - HZH - n), since, again, QVQ' = EI/VYVN . Either one of

the metrized implications of fkn) ﬁkm) is thus equally acceptable,
although we have included only the former in the implication table of
Appendix II.
METRIZED VERSION OF TRUTH TABLE

The truth value of the cyclic ternary string Xw,Yw X does

=2

not, of course, change when w, and w, are metrized, <Cyclic strings
in this section will thus always mean true cyclic strings, With the

) v 1) : ) . .
exception of the cycles KK, ¥Y, and AA; which, in their metrized
form, carry neither new parameters nor information about the lengths
of the relates, the significance of a ternary cycle of metrized relations
is that it implies an equation holding among the parameters of the rela-
tions and the lengths of the relates. Hence, the 'l1‘ values in the
truth table of Appendix II, (Ref. 1), can each (with the above noted
exceptions) be replaced by an equation. Figures 3 and 4 exhibit the

meaning of these equations for the cycles XZ(i,j)Y &(n)X and

s
XKY N(i)X , respectively,

1) Equivalently, RK



n \ 'J:
y P . n
5> time > time
Fig. 3 Fig. &
From Figure 3 we have i + ||X|| + n = ||Y|| , From Figure

"
3

4 we have the simpler equation n These equations, on the
surface trivial, are given in Appendix III. Their enormous role in the
detection and resolution of time-conditional conflicts will be seen in
Section III.
METRIZED RELATION NETS

Given A(*X), ||X||, ||Y||, and XM(w)Y, where M(w) is
the metrization of the relation w, it is easy to show that A(X¥),
A(*Y), and A(Y*) can be computed, i.e,, an exact schedule of XwY
can be produced. For example, if Xo(i)Y, then, under the stated con-
ditions, we have: A(X*) = A(*X) + |[|X||, A(Y*) = A(X*) + i, and
AC*Y) = A(Y*) - ||Y||, It readily follows that given a metrized relation

b

net °, i.e,, a relation net each of whose areas is metrized, and given

leill for each node of the net, then an exact schedule corresponding to
the net can be produced providing we only know A(*Xt) for some Xt'

Figure 5 shows a metrized relation net,

1) A net with truth value equal to 1, since it makes no sense to metrize
nets containing logical conflicts,



given [[x{[, [l¥ll, [lz[l, [lvll, 1Iwll, ana a¢x),

the schedule represented by the net 1s generated as follows:

1) A% = AGx) + |[g]]
2)  A(CXY) = A(X*) + i,

3) A(Y*) = ackv) + |]v]]
4) A(*Z) = AC*Y)

5) Azx) = a*z) + |]z]] ,
6) A(*V) = A(*Z) - n ,

7) A(V¥) = A(Z*) + m ,

8) A(*W) = A(*V) ,

9) A(W¥) = A(*X) - j

(observe that ||V|| and ||W||, although act used, coulc have been
employed, respectively, in equations 7) and J) 1n the calculations,
respectively, of A(V¥) (= A(*V) + ]|V||) and  A(WH) (= A('W) + |]w|i))
These calculations do, of course, flow direcrly trom tne deiinitious ot

1)

Appendix I, The schedule is shown 1n Figute ©

1) We have assumed that the durations and relatioa parduaeters are such
that the relations of the net are satisfied, i,e.. the uct is not
in conditional conflict (See Section III, pagc 1),
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Fig., 6

It is intertesting to compute the metrized derived constraint
between X and V, From X to V through Y we form the string
(1) YYZZ(n,m)V , From Appendix B we have X[(i)YyZ = XI(i)Z and
X[(1)25(a,m)V = XP(i + m + |[2]])V , letting n=1i, i=n, j=m,
and ||Y|| = IIZII in the table. From X to V through W we have
X[(j)WyV, which, from Appendix II, reduces to XN(j + | [w]])v . Now
NAP = £ and hence XZ(j + IlWll, i+m+ IIle)V, as seen in Figure 6,

In the initial stage of defining constraints it is sufficient,
for certain activities, to express XQOQY, XQ'Y, or XAY without specify-
ing any ordering of X with respect to Y. There are, in fact, good
reasons for employing these general relations whenever possible, The
chief advantage, as will be seen from our next example (and also in our
future work on the time-line packing of subschedules), is that the planner
is provided with a variety of schedules for a given net, each possibly
different in some critical operational aspect, It is true that the
excessive use of such relations will induce combinatorial problems of
great complexity. On the other hand, there is little excuse for reducing

the number of solutions to a problem in the interests of achieving a

simplicity and rigidity corresponding only to the most highly deterministic



(and therefore improbable) situations,
Figure 7 shows the set of schedules generated by the metrized
relation net XZ(i,j)Y, YQ'Z, Zo(S)W, and WAT, where T denotes an

interval of time with left hand endpoint at the beginning of the time

line, i.e., *T = ¢ and hence A(*T) = 01), Cases 1, 2, 3, and 4
correspond, respectively, to Q' =I(n), Q' =K, Q' =I(n), and
1' = K, The total durations of the suabschedules are ||Y|| + n + ||Z||

+5 (case 1), ||v|| + [lz|| +s (case 2), [|z|| + n+ [|¥]] (case 3),
and ||z|| + ||¥|] (case 4). 1If it is desired that either X or Y
precede Z, then Cases 1 and 2 apply. If the shortest subschedule

having either X or Y precede Z is desired, thea Case 2 alone applies,

The shortest subschedule is obtained in Case &,

i j L j
PRI N AN
1) W
T i
time time
Case 1. Q' = [(n) Case 2. Q' = K
i j i i
A X
A z2 ¥
s R
W w ®
Ik il
time - -
> ”
Case 3, Q' = I'(n) Fig. 7 Case 4., Q' =K

1) The activity T is used in defining constraints between physical
activities and the schedule time line, (See Section I11)

10



The choice of a subschedule may also be dictated by relatious
holding between nets which, as soon as we know what is meant by the left
and right partial complements of a net, may be defined precisely as they
are between activities,

For any net n define *n to be *Xl, Xien, where
K Xken,
where X*k(PV_/\)X*j for each Xjen° Finally, define Ilnl] = A(n¥%)

*Xi(NVV)*Xj for each Xjen. Similarly, define n* to be X*

- A(*n) to be the length of the net n, Figure 8 shows the situation

for a net n with seven activities,

Fig. 8

1 to be net XZYQ'ZQWJ\TI) and let n, be the net

TKX'KY'KZ', Suppose it has been determined that nlﬂ'n

Define n

2 must hold,

From a Gantt chart construction it is then immediately evident that

annzn We will now derive this constraint directly, Since the activity

~—

W is a part of n; we can write nIZW. Figure 9 is the relation net

of the composition of ny and n,.

1) T as in Figure 7,

151!



7"
YN

¥ <

From the implication table of (Ref., 1) we have nl(fjtl()n2 = nl(A-v a)Kn

nl(K\/é')nz. Now Q' = KV Evaf, Hence nl(l(\/ g,)Q’nl

nl(KVé)(KV Evrvr)nl = n (RKV KRV KTV Kfv”éxvéiv‘érvifmla FEon

the truth table of (Ref, 1) we find that all of these cvclic ternary

strings are false with the exception of KK . Hence (' = K and
-~ ~/
annanl, i€l nanl, as we set out to prove,

It is now clear that Cases 1 and 2 are the least likely to
result in a violation of annz (||*Z|| + ||Z|| + n + ||Y|| may exceed
||T||, for example, in Case 3). We shall return to this example in
Section I11, where we will use metrized relations to deduce directly the
desirability of Cases 1 and 2. At this point 1t 1s important to see the

way in which relations between nets reduce the combinatoriai propiems

generated by relations such as Q aad Q' within aets

12

2



SECTION III

CONDITIONAL CONFLICTS

BASIC FORMS FOR THE GENERATION OF CONDITIONAL EQUATIONS

Scheduling conflicts arising from logical incompatibilities
among scheduling constraints were discussed in (Ref. 1). It will be
recalled that a Gantt chart of a relation net exists if and only if
the truth value of the net is 1, Thus given a true relation net it is
always possible to satisfy the net's relations by some set of activity

1)

durations, Given the start time of any activity, a Gantt chart of the
net can then be produced, These statements hold true for metrized rela-
tion nets, as well, the only difference being that the set of Gantt
charts corresponding to a metrized net is generally properly included in
the set of Gantt charts corresponding to the unmetrized version of the
same net, a consequence of the added restrictions imposed by the para-
meters of the metrized relations.

A metrized relation net is realizable if the durations of the
activities, along with the start or finish time of some activity, are
given. From Section 11, page 7, it follows that the start and finish times

of each activity of a realizable net are determined. Define the metric

variables, or m - varijables, of a realizable net n to be the collection

M(n) of durations and start times of the net's activities, along with

-~

1) The cardinality of the class of such sets is, in general, 2.°

153



the parameters of the net's relations, A realizable net 1s 1n conditional
conflict if any of the members of M(n) undergo a change of value. We
recognize four types of conditional conflict:

Type I: The m - variable changes leave each of the relations
of the net fixed,

Type 11: The m ~ variable changes induce a change of the
relations of the net, but a redefinition of the m ~ variables restores
the original relations,

Type II1: The m - variable changes induce a change of the
relations of the net, no restoration of the original relations is possible
by redefining the m - variables, but the new net is not in logical
conflict,

Type IV: Identical to Case 3 except that the new net is in
logical conflict,

In this paper, we shall fully treat Types I and II, and give some analyt-
ical insight into Types III and IV.l)

We now turn to the application of metrized relaticn nets to
exact scheduling, The basic principles of application can be deduced
from nets having only one activity that must be completed at a specified
time, and we so restrict our discussion in this section. The general
case, in which several activities of a net are constrained to the time

line, will be treated in Section I1I1, page 21.

1) Types III and IV will be treated in general in "Heuristics for the
Resolution of Logical and Conditional Scheduling Conflicts" by L. C.
Driscoll, The MITRE Corporation. MIR-110 (To be published)

14



The example in Figure 7 of the previous subsection will serveas
the starting point of our development of a set of equations from a
realizable net, We begin with Case 1, in which Q' = I'(n). Define
and dW, respectively, 9s the durations of *X, *Y,

1
*Z, and *W, :

dX, d¥ dZ

» Pl | »

We then immediately have TN(dX)X, TN(d¥)Y, TN(dZ)Z, and
TN(dW)W. Figure 10 is the metrized relation net for Case 1 with the

above relations included,

From the metrized implication table of Appendix B. we find
that XE(4,3,)YT(n)Za(s)WAT = XT(§ + n)Za(s)WAT = XP(j + n + & +
+ ||Z||)WJ\T = Xikj +n+5 + ||Z||)T, We now form the cyclic ternary
string Xf(j +n+s + ||Z||)TN(dX)X and, from the metrized truth table
of Appendix II1I1,find that this string is equivélent to j+n+s + ||Z||
+ dX + ||X|| = ||T||, which is clearly seen in Figure 7, The metrized
implication of Y[(n)Za(s)WAT is YP(n + & + ||2|])T. From the

metrized truth table YP(n + s + ||Z||)TN(d¥)Y is equivalent to

1) Note that dX is the start time of X, etc,

15



0, # g o+ ||Z|| + dYy + |[Y|| = ||T||, which is again evident in Figure 7.
The equations dZ + ||Z|| + s = ||T|| and dW + ||W|| = ||1i| can be
similarly derived.

The equations derived above are called parrial couditional

equations, Each' has the property of being generated from a cycle
of the form Xowoxlwl----wanTh(dXO)XO, involving both the activity T
(a section of the time line with *T = @), and the start time of some

other activity, A complete set of partial conditional equations of a

realizable net is a set of partial conditional equations in which each

m - variable of the net occurs in some equation of the set, The comple-
tion of the set of partial equations of the net of our example is obtained
by substituting i + ||X|| + j for ||Y|| in any equation containing
|1¥]], since X£(i,j,)Y implies i + ||x|| + j = |]¥]].

A total conditional equation of a realizable net is the sum

of any complete set of the net's partial conditional equations A tortal
equation of the net of our example is: d¥X + dW + dZ + i + ffY!l + ||W||
+ 2(dY + [|X|] + 3) + 3n + 4(s + |]|z|]) = 5||7|]|. 1t might be supposed

that so long as this equation holds there can be no violation of the

relations between the activities. A quick glance at Figure 7 will

convince the reader that such is not the case, An increase in n, for

example, cannot be offset by a decrease in ||W||, since, from the
partial equations, ||W|| is not a function of n. One of the uses of
total conditional equations will be seen on page 19, Obvicusly, the

16



relations in a realizable net will remain fixed so long as the partial
equations hold and the relation parameters remain within their proper
bounds.

Let n be a realizable net, T an activity of n with
*T = @, and Z an activity such that ZAT and *Z # @, Then TNZ,
For any activity X and relation w it is easy to verify that

C(XWZATNX) = 1., More explicitly, we have:

C(PN)
C(EAN) = C(aN)

L(ZAN)

C(TAN) = C(PN)
CTAN) = ¢
C(KAN) = C(EN)
C(RAN) = ((KN)
CINAN) = C(aN)V C(AN)V C(EN)
C(NAN) = C(PN)V C(AN)VC(EN)
C(PAN) = C(PN)
C(BAN) = ((PN)
C(@AN) = C(PN)
C(IAN) = ((aN)
C(BAN) = C(3N)V C(AN) V C(PN)
C(BAN) = C(aN)V L(AN) V C(BN)
CO¥AN) = C(BN)V C(¥N) (= 0)V C(NN)(= 0)
CAAN) = C(AN)
C(RAN) = C(AN)

17



Except where indicated, all truth valies 1n the above list are equal to

l. The list can be decomposed into the following six classes

Class

Class

Class

Class

Class

Class

L FN, aN
2 - PN, ON
~s
3 ~-IN
4 . KN
5 - AN
6 - BN

Letting n be the parameter of the first relation, and dx the para-

1
meter of the second ) these classes correspond (Appendix 11!), respectively,

to the partial conditional equations:

D ooax + X[+ a = |1
2y ax + ||x]| = [|T]] + n
3) dX =n+ ||T]]
4) ax = |]Tl|
5) ax + |[|{x[] = [[T]]
6) dX = n
It may appear that (6) does not involve ||T||, but B8N was tne resuit

of contracting XYyZATNX,

From the metrized implication tabic we Lind

that XyZAT = X8(]|1|| - ||2]]|)T and hence n = [|T]| - !]2]| in (&)

The six classes of ternary cycles named above will be calicd ihc

1 b
Ll Do

forms for the Generation of Conditional Equations

1) Thus yielding the general form Xw(n)IN(dX)X

18



RELATIONS BETWEEN NETS

In Section II, we presented an example of two nets, ny, N,
standing in the relation annz. ny contained the relation {1', which
gave rise to the four cases of Figure 7., It was stated that the desira-
bility of Cases 1 and 2 could be deduced directly from a metrized relation
net, A comparison of Cases 1 and 3 will illustrate the method,

The metrized derived constraint between X and T (Case 1)
is X;(j +n+ s+ ||Z||)T. The metrized derived constraint between
X and T (Case 3) takes not one, but three forms, depending on the

magnitudes of the various m - variables involved, Thus

XZ(i, j)YI(n)Za(s)WAT reduces to:

(i) XP({ +n-s+ |[[XIhT if i+n+ ||x]]>s,
(ii) XAT if i+n+ |[|X|| =5,

(iii) XP(J|X|] ~ 1 -n-8)T if i+ 0+ ||x]|<s.

Turning now to Figure 9, we substitute X for W and, in succession,
P, A, and P for A . The truth values of the resulting cycles are
C(PKEE) = 0, C(JtKif) =1, and C(FKiis =1, Hence Case 3 can give
rise to a logical conflict if i + n + IIXII > g, whereas no such con-
flict is possible in Case 1, Comparisons of Case 1 with Case 4 and of
Case 2 with Cases 3 and 4 will, naturally, yield similar results. This
establishes the feasibility of automatically analyzing relations between
nets without referring to Gantt charts.

The analysis of another problem involving relations between

nets is based upon Figure 11, in which the realizable nets n, = YT(m)ZJlTl

and n, = UT(i)V’T(j)W_/\.T2 are related by YyU and 2Q'V, Suppose we

~

19



let Q' be I(n), as in the figure.

dy m
i SO S
-
du i ]
= 8 s S ey W
N P ~
_v n
dZ
Tl T2
Fig. 11

The total conditional equation for the combination of ny and

n, is [[U]] + i+ dv+ dW + 2(aY + dZ + U + n) + 3(m + Y]]

+ 4l |vl[ + 3> + s[4 + [Iw[]) = 37 + 5T,, which yields

1
no= %(5T, + 37 - Dy(I[ull + 4+ av + aw) + av + az + av + 3/2(a + |[¥]])

+2¢|[v] + 3 + s/2¢]|z]] + [[Ww]D] .

If n>0 then I(n) 4is an acceptable form of Q. If n=0 then

Q' =K, If n<0 then (' must take the form of either F(n) or K
and a new total conditional equation must be derived based upon V
preceding Z., Again, if n > 0 then f(n) is an acceptable form of

Q. If n=0 then Q' =K, If n <0 then either ZOV must hold
or some combination of the variables dY, ||Y||, m, dU, etc. must be
assigned new values, We thus see that introducing relations between
realizable nets can induce conditional conflicts within the nets and,
conversely, if the m - variables of several realizable nects are fixed,
then the introduction of relations between the nets is not arbitrary, but
must proceed within the limitations set by the total conditional equation

of the related nets,
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DETECTION AND RESOLUTION OF CONDITIONAL CONFLICTS

The partial conditional equations for Case 1, Figure 7, were
derived on page 15. To increase the richness of the discussion which
follows, we add the additional constraint Y[(m)W, thus introducing three
more cycles into the net of Figure 10, The partial conditional equations

for the augmented net are:

a) dY + ||Y|| + a4+ [|z]| + s = |[1]]
by d¥+ i+ [[x|| + 5+ n+ [lz[] +s = []T]]
ey dx+ [[X[| +3+n+[]z]] +s= ][]
d) az+ |[z]| + s = ||T]]
e) aw+ [[w]| = [|T]]
£) av+ ||Y|| +m+ [|w]| = []|7]]
g) ax+ ||x|| +3+m+ [[w[]=[|T]|
hy dav+ i+ |[[X[[+ 35 +m+ [|w]] = [[z]]
Equations a) = e) were derived on page 15. f) - g) are a consequence

of the added constraint Y[(m)W,

In this subsection, we shall explore the interdependence of m -
variables in a metrized net and examine the ways in which changes in the
m - variables propagate through the partial conditional equations, As
stated previously, we shall confine ourselves to conditional conflicts
of Types I and II,

This restriction is equivalent to the assumption that the matrix
of coefficients (0's and 1's) of the linear system a) —= h) is inde-~

pendent of m - variable changes.
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To each m - variable V, except IITII, of the system
N
a) =~ h), we now add the quantity V, representing the change i1n V

Subtraction of the system a) = h) from the new system yields a linear

homogeneous system whose coefficient matrix is:

A A A A AN A A A A LA A A
av ax X[ [l i+ 5 v owmoaz oaw [lz]] [lwl] s
\
1 o0 0 1 0 01 0 0 O 1 0 1\ a
1 O 1 0 11 1 0 0 O 1 0 1 b
0 1 1 0 0 1 1.0 0 O I 0 L c
0 0 0 0 0 0 00 1 O i 0 1 d
M=
0 0 0 0 0000 0 1 0 1 0 e
1 o 0 1 0 001 0 O 0 1 0 f
0 1 il 0 0 1 01 0 O 0 1 0 g
1 o0 1 0 1 1 61 © O 0 1 0 h

M represents a system of 8 equations and 13 unknowns, That M has
rank 6 1s easily verified, From elementary algebra the nullity of M
is 7 and therefore the system has 7 linearly independent solutions form-
ing a basis for the totality of solutions of the system,

The usual method for finding the basis for the null space of
a matrix is to form the reduced echelon matrix by elementary row

operations, The reduced echelon matrix of M 1is:



& &K NN TR A& & = e
1 0 0 1 0 0 O 1 0 0 0 1 0
0 1 0 1 -1 0 O 1 0 0 0 1 0
0 0 1 -1 1 1 0 0 0 0 0 0 0
0 0 0 0 O 01 -1 0 0 i: -1 1
EM E 0 0 0 0 0 0 O 0 1 0 1 0 1
0 0 0 0 0 0 O 0 0 34 0 1 0
0 0 0 0 0 0 O 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

The zero rows of EM indicate that the original equations a) = h) are

linearly dependent, From EM we immediately conclude that

A A N N A A A N N A

s= (- |I¥ll =m= [lwll, - [lell+5%-m-[|wl], [le]]-1-3,
~ A A ~ A A A i A
||Y||9 i’ j’ {n\- ||Z|| ¥+ ||W|| - 8 m = ||Z|| - 8,

A ; . . > ’
-Ilwll’ ||Z||’ ||W||, ||S||)

is the general solution of the system a) - h), Equivalently, we obtain

all solutions by assigning arbitrary values to ||Y||, i, 31, m;
||Z||, ||W||, and ||s||, and solving the system
= A 7 A A
a) ay + ||Y|] +m+ ||w|| = 0
- A A A A A
b) dX+ ||Y]] -i+m+ ||W|]=0
= A4 A A
c) HxIT - el +i+35=0
= ! b
R AR T
= N A A
e) az+ ||z]] +s =0
- A Va)
£) aw+ [|w|] =0
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N

for the remainder of the variables, In particular, the cases ||Y|| = 1,
N A N A @ A A va N A
S m = (Wl = 1l =05 T=v, [l =G=m~-

N
= ||s||; etc,, provide a basis for the null space. Any linear combination
of basis vectors is, of course, a solution.

The basis vectors defined above allow us to develop resoluacions
of conditional conflicts induced by m - variable changes within a metrized
relation net. For example, suppose in system a) — h) we aliow the variable

Ly . & : : ,
m to decrease to m~ 1", 1,e,, m= -1, Since m is a basis variable
we set the remaining basis variables to O, then solve the equations
N A

= - N N A N
a) = f), obtaining dY =1, dX =1, n= -1, and [|X|] = dz = dWw = 0.

Figure 12 shows the effects of these changes (the new variables are primed).

dy! Y' n
m
r = w
W
ml
T
Fig., 12

The resolution above is by no means the most local, in the

1) 1 {s assumed to be a small increment of time.
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sense that the change in m induces changes in the least number of the
remaining m - variables. A cursory inspection of the matrix M does,
in fact, reveal that the local resolution to a decrease (or increase) in
m is a corresponding decrease (increase) in dW and an increase (decrease)
in W, We shall presently develop an algorithm which will, in most
cases, give local resolutions to conditional conflicts ariving from m -
variable changes.

From elementary algebra we know that a system of n homogeneous
linear equations with n unknowns has nontrivial solutions if and only
if the determinant of the system is O, In particular, if the rank of
the system is n, then M has only the trivial solution, which signifies
that either a Type III or Type IV conditional conflict has occurred (for
example, some combination of the coefficients of the linear system a) - h)
has been changed; equivalently, one or more of the partial conditional
equations of the net do not hold), If anm - variable V 1in a realizable
net is not allowed to change, then G\= 0, and the properties of the
linear homogeneous system corresponding to the m - variable changes are
altered,

From the partial equations a) = h) we construct a mapping
F carrying each m - variable into the set of equations to which the

variable belongs. We call F the m - variable association, or simply

the m,v.,a,, of the net, A few values of F are F(dZ) = {d},
F(||Y||) = {a, £}, and F(s) = {a, b, c, d}. In (Ref, 2), it was shown

that if. B is a Boolean algebra of sets and a, b, €B, then the function

alb

6(a, ) = 1 - oGt~ |

where Iaﬂbl and IanI are, respectively, the numbers of elements in
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allb and alb, is a pseudo-metric on B, We now apply this function
to define the distances between m - variabies of a metrized relation

net, Thus if X and Y are m - variables of a net, then

B F(XNF(Y
a(x,Y)-l"Hﬁu—Fj&i’",

where F is the net's m,v,a. A few distances in the system a) = h) are:

§(dZ, dw) = 1 - | j ﬂee =1
b

L |fa, b, cln{b, ¢, g h}| _ _
L s v T e

|fa, b, ¢, dinfa. b, e, d}| _

8Cs, |lz]]) =1 - [Ta, b, c, dJ]

1-1/1=0.

3

The last case shows why & is a pseudo-metric rather than a metric,
The matrix M is the representation of the m,v.,a, of the net

from which the system a) — h) was derived, Using ¢ we now construct

’
the local resolution to a change in m, Computing the distances between

m and the other m - variables we find that ||W|| 1s the closest

variable to m, We next define the quasi - m - variable m/ILWLl by

F(m/llWIl) = (F(m)UF(l|W||)ﬂ[F(m)ﬂF(||W||)]', the symmetric difference
between F(m) and F(IlWII), The m - variable closest to m/llWlI

is d, and is fact §(dW, m/||W||) = 0. The computation ends here and
it is evident that an increase (decrease) in m can be accompanied by an
equivalent decrease (increase) in ||W||, which will in turn induce an

equal increase (decrease) in dW, Observe that this resolution, although

local, is an equal increment resolution, and not necessarily the most

desirable, The existence of a non-trivial resolution still depends, of
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course, on the rank and structure of M, and the formation of EM still
yields the most general resolutions.

We now extend the above process of conditional conflict resolu-
tion to nets containing two or more activities, each of which must be
completed at a specified time. The method will be adequately demonstrated
through Figures 13a) and 13b) which show, respectively, a metrized rela-
tion net and its corresponding schedule, Activities Z and R finish,

respectively, at times T, and T, .

1 2
S(i,3) N(m) B(n) K Z(U,V)
X Z 3W
a)
i X j
A"
Y W E _u-\
\H___,w_.l
m n U b)
~ Z 4 £ R
T1 TZ
Fig., 13

There are several ways of generating the partial conditional
equations from the net of Figure 13a)., We may, for example, generate the
equations first with respect to the cycles containing Tl’ and then with

respect to the cycles containing T the remaining equations coming

2’
from XZ(i, j)Y and sZ(U, V)R, yielding, respectively, i + ||X|| + j
= ||Y|| and U + ||S|| + V= ||R||, On the other hand we observe that

[yl < [z, || => TZEkllTZII - ||ty [)T), the derived constraint
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between T2 and Tl, Figure 14 shows an alternative form of the net

of Figure 13a),

(i, ] N(m B¢ K (U V)
J)__:Y (m) > 7 n) W . (U,

N(dY) N(dZ) N(dW) N(dS) N(dR)
5

-
Tl

AEATIENTENTE 2

Fig., 14

We may now generate the partial conditional equations with
respect to the cycles containing both T2 and Tl (through N(dX),
N(dY),.... ,N(dR)). Finally we may generate first with respect to cycles

containing only T (through N(dX), N(dY), N(dZ)) and then with

1

respect to the cycles containing T2 and T1 (through N(dW), N(dS),
N(dR)). The first method requires the least computation, but the
symmetry of the second method is also attractive. The occurrence of a
number of time-bound activities in a metrized relation net does not, at
any rate, introduce any new problems in generating the partial conditional
equations for the net.

We conclude this section with a discussion of dynamic conditional
conflict detection and resolution (again restricting ourselves to Type I

and Type II conflicts). The discussion will be based on the example used

in the beginning of this section, Denote the start time of any activity,
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or relation parameter, V , by A(*V), In general the start times
A(*Vj) of the activities and relation parameters Vj of a realizable
net are partially ordered. In Case 1 of Figure 7 (with YI'(m)W added)
we thus have A(*Y) = A(*i) < A(*X) < A(*j) < A(*n) = A(*m) < A(*Z)

< A(YW) < A(*s) < A(*T) , if we assume ||W|| < [|]z]]| + s.

Suppose that the activities of the net are actually being
performed, The first activity to start is Y and suppose, for the sake
of argument, that Y 1is started late, From the m - variable change
matrix M we form EM and obtain a new set of values for some subset
of the variables. It is now clear that the next change in the m - variables
cannot involve é§ and hence é§ = 0, The column in M , and hence EM .
corresponding to é§ is thus set to O, Let M1 and EM1 be the new
matrices thus formed. We infer that as the schedule is being completed
we must form an ordered set of m ~ variable change matrices Mi , each
having one less non-zero column than its predecessor. The ordering of
the set of matrices exactly corresponds to the time ordering of the start
and finish times of the net's activities, If at any time we encounter a
nXn matrix MK with rank n , then only the trivial solution obtains
and either a Type III or Type IV conflict has been encountered. If no
such matrix is encountered then the schedule can be realized with no

change of relations, providing that only positive values of the m - vari-

ables are generated as solutions to conditional conflicts,

CONCLUSIONS
The detection and resolution of both logical and conditional conflicts
in a complex plan, e,g, MOL, will most certainly require a partitioning

of the plan into manageable sections, and thus induce partitions of the
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schedules corresponding to that plan. Some of the problems of definuing
relations between subschedules have been briefly explored 1o t1s paper
In a subsequent paper we shall treat this subject in depth, with the aim
of discovering rules for partitioning schedules, and ¢f develcoping a full

analysis of the problem of defining relations between subsched.les,
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APPENDIX I

METRIZED SCHEDULING RELATIONS!’

(A(*X) and A(X*) are, respectively, the start and finish

times of activity X).

Def, 1 X[(L)Y <=> A(X*) + i = A(*Y), 1i>0
X i Y
P
> time
Def, 2 X[(1)Y <=> A(*X) = A(Y*) + 1, i >0
i
Y X
> time
Def, 3 XP(i)Y <=> A(Y*) + i = A(X*), i >0
¥ r—’i‘\
X
—p time
Def, 4 XP(i)Y <=> A(Y*) = A(X*) + i, i >0
Y
T
X
>»time

1) As observed in the Introduction, K, K, ¥, A, and ¢ are metrized
without additional parameters., They are included here only in the
interest of completeness,
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Lisf, b WA ) SeenA(EA) a1 = ABY), &3 O

A—';time
Der. v AN(L Y =2 AMA = Alsy) o+ i, i >w
v
i
r-/\_x—
> time
Def 7 Xy(1)Y <=> A(Y%) = A(NY)Y + 1, 0 <
——
%
e 5= time
ber 8 a1, <= A% 1 = AXx%), O <
X
i
Y N
—> time
De 9 XB(1L)Y <=3 A(*Y) 4 1 = A(*X), 0 <.
= v
N
Y
> time




XB(1)Y <=> A(*X) + 1 = A(*Y), 0 <1i < ||x||

Def, 10

X
e ¥
I time
Def, 11 XZ(i, j)Y <E=> A(*Y) + 1 = A(*X) and

A(Y*) = A(X*) + 3, 120, j20,1i+3>0

r’.‘\_x__/“.%
Y
3 time
~
Def, 12 XZ(i, j)Y <> A(*X) + i = A(*Y) and
A(Y*) + j = A(X*), i>0, j>20,1i+3>0
X
i j
—
> time
Def, 13 XKY <=> A(X*) = A(*Y)
X , Y
= time
Def, 14 XKY <=> A(Y*) = A(*X)
Y 3 X
)time
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Def, 15 XYY <=> A(*X) = A(*Y)

X
Y
>» time
Def, 16 XAY <=> A(X*) = A(Y¥)
X
Y
> time
Def, 17 X8Y <=> A(*X) = A(*Y) and A(X*) = A(Y*)
X
Y
> time
Def, 18 XQY <=> X(y VB(i) VB(i) VA V a(i)v a(i)V 8V E(L, j) v E(i, i)Y
’ S =
Def, 19 XY <=> X(I'(1)V KVKVI(i))Y
Def, 20 XAY <=> X(¥VB(i)VB(i) VA Va(i)V a(i)V 8 VI(i,j)V

£(i,j)vV KVK)Y
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APPENDIX 11

METRIZED IMPLICATION TABLE

The metrized implications of ternary strings of the relations
defined in Appendix 1 are given below. The general form is Xw(i)Yakj)Z
= le(il)ZVsz(iz)Zv ....VXwn(in)Z, The relates are not included in
the table and X, Y, and Z are always to be interpreted, respectively,
as the initial, intermediate, and final relates of the string. To avoid
long, cumbersome, expressions joins in implications are represented by
commas, thus yielding lists of the elements of implications. The table
is divided into relation classes, the first factor in each product being
the relation class to which the product belongs, The products in each
relation class correspond to a complete row of the bilateral implication
table of (Ref. 1). The employment of the forms of i, Q', and A& 1is

explained in Section II, page 4.
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Z(1i,3)Z(n,m)

£(i,3)E(n,m)

(i,1)0(n)
(i, )T(n)
(i, K
£(i,)K

Z(1,3)N(n)

£(i, 1)¥(n)

2(1,3)P(n)

£(i, j)P(n)
£(i,j)aln)

£(i,j)a(n)

£(i, i)B(n)
£(i,1)8(n)

Z(1,3)¢
(i, A

= IE g

]

= A if n

S fkn, )
N(i-n),

y if i = n,
N(n-i).

I'¢ jm)
f(i+n)

(i)

T(4)
Eii-n),

y if i = n,
N(n-i),
N(nti)

P(n-j),

1]
=)

P(j-n).
P(ntj)
P(n+j)

P(n-j),

]

3
B(j-n).
N(i+n)
N(i-n),

y if i

n
=

N(n-i).
N(i)

P(3)
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(i, 1)

2(i,3)Z(n,m)

51, 3)%(n,m)

£(i, HT(n)
(1, 1))
£(i, 1K

£(i, §)N(n)

£(i,)N(n)

£(i, j)P(n)

(1, 3)P(n)

(i, )a(n)

(i, j)a(n)

£(i,i)B(n)

2(i,3)8(n)
£(i,1)Y
Sl A

51,1k

3(n-1),

y ifn =i,
3(i-n)

T(i+*n, j+m)
NCitn+ | Y|
P(i+a+| Y]]
3G+ e
N(i+n),

Den-Ci+ Y]
N(n-i),

yif n =i,
B(i-n).

P( j+n)
D(n-|2]]-1),

K if n=||z]{+],
a(n=-j3).

&zj"n),

= Aif j = n,

1]

o(n-j)
a(n+j)
B(i-n),

y if i = n,
8(n-i).
B(nti)

N(i)

a(3)

~s
o] Y]



F(n)Z(41,3)
T(n)E({, §)
T}
I(n)L(m)

T'(n)X
T'(n)X
I'(n)N(m)

T(n)ﬁ(m)

I(n)P(m)

I'(n)P(m)
T(n)a(m)
T(n)&(m)
I'(n)8(m)
T'(n)B(m)
T(n)y
T(n) A

]

F(n+j+| l¥| 1)
T(nt+i)
T(nt] || |4+m)

P(m"n):

=A if m = n,

=.jtif m-llzll = n,

= Nif m = n+||Y||,

B(n-m)
T(ot] Y] ])
P(n)
N(n+m)

P(m-||z||-n),

P(n-(m-| [z ])).
P(m-(ot| Y[ ])),

B(nt| Y]] -m).
F(n+m+||Y||)
P(ntmt| Y] )
B(at(| Y] [-m))
B(at(| ||| -m))
T'(n+m)

T'(n)

P(nt| Y]]

~

I'(n)
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T(n)E(4, )
T4, §)

I:(n)l'(m)

F(m)T(m)
fkn)K
fkn)i’

T(n)N(m)

1:’(n)l\‘ll(m)
T(n) P(m)

fkn)ikm)

T(n)o(m)
T(n)a(m)
T'(n)8(m)
T(n)8(m)
F(n)\?
T(myA

P(i+| |t [+n)

I j+n)

N(n-m),

y 1f n = m,
N(m-n),
Fent| [ ¥] [+m)
N(n)

Feat] [
Neot | ¥ ] -m),
y if |[¥[[+n = m,
N(m-(nt] [¥] ])).
Nt | || )
TG

P(m-(n+| [X] ),

- Aif m=ot]|x]],

P(n+||X|]-m).
N(ot||2] | -m)
T(atm)
Nt | || |+n)
N(| Y] |-mtn)
N(| ] [+n)

f(n)



I=

KS(i, §)
KE(i, i)

K[(n)

KP(n)

KP(n)
Kor(n)
Ke(n)
K8(n)
K8(n)
Ky

)

1

ol | x| +3)
T'(1)

Pot| Y| ])
P(n)

b

A

I(n)
Na-| x| ]),

v if n = [[x]],
NC| x| [-n).
B(| Y[ [-n),
Aif ||¥]] = n,
p(n-||¥|]).
B(| Y] |+n)
B(| Y] [4+n)
B(|]x]]-n)
o(|]z| |-n)
T'(n)

K

B(|lvlh

b=(

38

KE(i, §)
KE(1, )
k()
K(n)
KK

S

KN(n)

KN(n)
KP(n)

KP(n)

]

aci+|[v|D
I 5)

N(n)

T(| ] [+n)
¥

Tl el

w1 |-n),

y if n= ||Y]],

N(a- | Y| ],
Neo+| Y] )
fkn)

P(llxll-n)s

sl |z ]-n)
T(n)
Nt 2] ]
(| Y| |-n)
N[l
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zZ

N(n)Z(1,j)

N(n)Z(i, §)
N(n)I'(m)
N(n)T\(m)

N(n)N(m)

N(n)N(m)

N(n)P(m)

N(n)P(m)

N(n)w(m)

N(n)akm)

N(n)B8(m)

8(i-n), N(n)8(m)

¥ if i = n, N(n)¥
N(m-i). N(n).A
= N(nt+i)

N(n+| | Y| |+m)

N(| 2] [+m-n),

y if n = [[z][+m,
N(n-(|[z] [4m)).

N(n+m)

N(m-n),

Y if n = m,

N(n-m).

N(| |z] [+m- (k] [¥] D),
v if ||z]|+m = o+|[¥]],
Nt Y] |- |2] |[+m)).
a(| x| |-(ot | [¥] [+m)),
Aif |X]] = o] [¥] |4m,
B(ot| Y] |+m- | X[ ).

& | |x] |- (ot] [¥] [4m)),
Nif o] Y| [+ = [[x]],
Bot| Y] [+m-] %] ].
a(m-| x| |+n-[[x]])),
Aif ||| |+n-|[X]] = m,
B(| x| +n- %] [-m).
B(m-n),

y if m = n.

N(n-m),
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N(m+n)

N(n)

o | [x] -l Ix][+n)),
At ]| = []y]|+n,

B(| Y] |+n-] || ]).



e

N(n)

N(n)E(4, §)

N(n)E(i, §)

N(n)I(m)

N(n)T(m)

N(n)K

N'(n)i(,

N(n)N(m)

N(n)N(m)

N(n)P(m)

N(n) P(m)

N(n)o(m)

Y\I’(n)&,(m)

N(i+n)
N(n-1)

¥ if 1 = n,
N(i-n)

N(| Y] [-ntm),

y if [[¢][+m =0, Wo)A

N(n-(| [¢]]+m)).
i)
Neo-| Y[ ]),
[1¥]],
N(|[¥]]-n).
F(n)

Y if n =

N(n-m),

Yy if n = m,

N(m=n).

N(n+m)

N(| 2] [+mtn-| [¥] ],
Hell,

NC| Y] |- (ott] 2] ])).

y if ||z]||+motn =

Nen-(||y] [+m-[2] ),
y if n = |[y[[+m-||2]],
(| ] [+m-| 2] [-n.
Nea-~(| [y fl+m-112] ),
y if n = |[¥|[4m-|(2]],
N(| Y] [+m=| [2][-n).
N(| 2] [+mtn- | |¥]]),

el

NCL Y] - (ot | 2] ])).

y if ||z]||+mtn =

40

N(n)8&(m)

ﬁzn)&m)

N(n)y

\I;I/( n+m)

It

ﬁ/(n“m) )

Vif n=m

3

N(m~-n).

I\\I’(n)

p(nt| |x]]-][¥[]),
= Aif n#|[x]] = []y]],
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APPENDIX 111

METRIZED TRUTH TABLE

The following table corresponds to the truth table of (Ref. 1),
with the exception that the entries for true ternary cycles are replaced
by equations which must hold among the m - variables of the cycles, The
general form of the cycle is taken as Xw(i)Yw(j)X. As in the case of
the metrized implication table relates are omitted. The relations 0,
', and A have not been included since the equations corresponding to
true cycles containing those relations are already represented in the
table (see pages 3 and 4 ). The table is symmetric and thus only
half of it is shown, If one encounters a blank for Xw(i)YﬁKj)X, simply

form X&Rj)Y&ki)X to find the corresponding equation,
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